Support Industrielle sensorer
Kontakt kundeservice
Support Explosion Protection
Kontakt

Output Logic of Switching Magnetic Field Sensors

Switching Element Function of the Sensor


Switching sensors have a binary output logic. The output knows only the two states "active" and "inactive" or "on" and "off." The switching element function determines whether a magnetic field sensor closes or opens the output when the object is detected, or whether this can be freely selected depending on the intended purpose.


NO Contact (Normally Open—State of Unactuated Switch)

Electronic switching element function of a magnetic field sensor: switching output logic. When the switching condition is fulfilled (e.g., the magnetic field sensor detects an object in the switching range), the output is closed, meaning the current flows. When idle, the output is open, meaning no current flows.


Example of Normally Open (NO)

Complementary

Electronic switching element function of a magnetic field sensor. A complementary magnetic field sensor features two integrated switching output stages—one designed as a "normally-open" type of output and the other as a "normally-closed" type of output.

Complementary sensors can be used to reduce the variety of sensor types in the plant, thereby reducing storage requirements. Mostly, the complementary design of the switching output stages is used for diagnostic purposes. A plausible output logic for the sensor is only possible if the two switching outputs have opposing states. If they have the same state, this is a sign of an error, e.g., lead breakage or lead short circuit.


Complementary—Example

Repeat Accuracy

According to EN 60947-5-2, the repeat accuracy is the deviation value of the effective operating distance (sr) under set conditions. The value defines the switch point accuracy of successive switching events over a period of eight hours at an ambient temperature of +23 °C ±5 °C and at a constant operating voltage.


Switching Hysteresis

According to EN 60947-5-2, the hysteresis (H) is the distance between the switch-on point when the damping element approaches the proximity sensor and the switch-off point when it moves away from the proximity sensor. The switching hysteresis H is specified relative to the effective operating distance sr, measured at an ambient temperature of +23 °C ±5 °C and the rated operating voltage.

H < 0.2 * sr

Proximity sensors from Pepperl+Fuchs typically have a hysteresis of 5 %.


e-news

Tilmeld dig vores nyhedsblad, og modtage seneste nyt om vores produkter, applikationer og andre spændende historier.

 

Subscribe
amplify–The Pepperl+Fuchs Magazine

Discover our online magazine! Exciting success stories, application reports, interviews, and regional news are awaiting you.

Magnetic Field Sensors

Take a look at the range of Pepperl+Fuchs magnetic field sensors.

undefined

We value your privacy!

We and our partners are using technologies like cookies and process personal data like the IP-address or browser information in order to personalize the advertising that you see. This helps us to show you more relevant ads and improves your internet experience. We also use it in order to measure results or align our website content. Because we value your privacy, we are herewith asking for your permission to use these technologies. You can always change/withdraw your consent later by clicking on the settings button on the left lower corner of the page.

Deny all cookies

We value your privacy!

Please select the group of cookies and scripts, that you consent to.

Functional
These cookies are necessary so that you can navigate through the pages and use essential functions (e.g. login).
Analytics
We use these cookies and scripts to measure the visits and clicks on our website in order to constantly improve it.
Marketing
These cookies and similar technologies are used to provide you with personalized and therefore relevant advertising content.