En el cajón de Pablo hay 11 pares de calcetines blancos y un número desconocido de pares de calcetines negros. Si extrae dos calcetines a ciegas del cajón, hay un 15 % de probabilidades de que acabe sacando un par de calcetines blancos.
¿Cuántos pares de calcetines negros hay en el cajón de calcetines de Pablo?
X= number of socks (22 items are white socks)
The probability of getting a pair of white socks when making two selections is 15 %, thus P(white pair) = 0.15.
If P1 (white) is the probability of getting white sock on the first pull, and P2 (white) is the probability of pulling a white sock the second time, then following applies:
P1 (white) * P2 (white) = 0,15
With P1 (white) = 22 / x and P2 (white) = 21 / (x-1)
This can be illustrated with the following equation which we set equal to zero.
Now, we solve the quadratic equation with the p-q-formula, using the variables p = - 1 and q = (22 * 21) / 0.15, and resolve into „x“.
There are 56 socks and consequently 28 pairs of socks in Paul‘s drawer. Since we already know that 11 pairs are white socks, 17 pairs (28 – 11 = 17) of black socks remain in Paul’s drawer.