Assistance gamme Détecteurs industriels
Tél.: +33 1 60 92 13 13
Fax : +33 1 60 92 13 25
Contacter le service commercial
Support en ligne pour la protection contre le risque d’explosion
Tél.: +33 1 60 92 13 14
Fax:  +33 1 60 92 13 25
Contacter le service clients

Structure of a Pepperl+Fuchs Type Code

For Inductive, Capacitive, Magnetic Field, and Ultrasonic Sensors

Pepperl+Fuchs’ product portfolio consists of several thousand sensors with different operating principles and offers the ideal solution for almost every application. These details and more are reflected in our order number, the Pepperl+Fuchs type code.

The type code is made up of three sections (seprerated by hyphens), each of which refers to specific product features. Below, we will explain and provide examples for how this is composed for inductive, capacitive, magnetic field, and ultrasonic sensors.

  • The first section (NCN15) contains information on operating principle (sensor type), series-specific application features (type of application), installation situation (flush/non-flush), and switching distance.                 
  • The second section (30GS60) provides the size of the thread, design, material, thread length, and transducer type (option 1, angled/swiveling).                                                                    

  • The third section (E2-V1) describes the electrical outputs, special characteristics (e.g., whether the output is flameproof or weld spatter resistant), option 2 (e.g., whether the sensor is IO-Link-capable), and connections.

Structure of our type code using the example of an inductive sensor


N N = inductive sensor
Inductive sensors detect metal objects and are used in many applications, e.g. in spraying lines or component recognition in the automotive industry.
C C = comfort range N N = non-flush Non-flush sensors can be replaced with flush sensors, but not the other way round. 15 15 = 15 mm switching distance The minimum distance must be observed, otherwise the sound will reach the sensor too quickly and the reaction time will be too low. This blind distance must be avoided.

-

30 30 = 30 mm big thread

G G = thread

S S = stainless steel

60 60 = 60 mm usable thread length

-

E2 E2 = three-wire, DC, PNP, no contact

-

V1 V1 = M12 x 1 device plug for DC sensors

Description of the First Section

1. Operating principle

All Pepperl+Fuchs sensors are listed under the category "functional principle," where the first letter of the type code symbolizes a defined sensor type. For example, the letter “U” stands for “ultrasonic sensor” and the letter “N” for “inductive sensor.”

 

2. Series-specific application features

When selecting a sensor, it is important to determine where and how the sensor will be used. Under the category "application-specific features," you will find the different application areas of sensors with their type descriptions. For example, the UC6000 ultrasonic sensor can be used for water rides, since neither dirt nor water impairs the function of the comfort series (C).

 

3. Installation situation

Inductive sensors measure switching distances by generating an electromagnetic field and using changes in the magnetic field to determine whether an object is in the sensor’s detection range. Metallic components around a sensor weaken the magnetic field and thus the sensor’s range.

Flush mount sensors can be used without free space (area=0). This gives flush mount sensors an advantage because they have better mechanical protection and are less susceptible to interference than non-flush mount sensors. However, flush mount sensors only achieve around 60% of the switching distance of non-flush versions because the active surface of the sensor is already surrounded by metal. Special internal shielding reduces the lateral influence of the surrounding metal but this affects range.


Installation Situation (flush mount / non-flush mount)

  • A = 2 x switching distance
  • B = 3 x diameter
  • D = sensor diameter
  • F = distance between sensors

4. Switching distance

The switching distance is the most important parameter of a proximity switch and depends mainly on sensor size (coil or capacitor). The dimensions and material composition of the actuator, as well as the ambient temperature, also have an influence. With magnetic proximity switches, the alignment and strength of the magnet used must also be taken into account.


E-news

Abonnez-vous à notre newsletter pour recevoir des actualités et d'autres informations passionnantes provenant du monde de l'automatisation.

S'abonner
undefined

We value your privacy!

We and our partners are using technologies like cookies and process personal data like the IP-address or browser information in order to personalize the advertising that you see. This helps us to show you more relevant ads and improves your internet experience. We also use it in order to measure results or align our website content. Because we value your privacy, we are herewith asking for your permission to use these technologies. You can always change/withdraw your consent later by clicking on the settings button on the left lower corner of the page.

Deny all cookies

We value your privacy!

Please select the group of cookies and scripts, that you consent to.

Functional
These cookies are necessary so that you can navigate through the pages and use essential functions (e.g. login).
Analytics
We use these cookies and scripts to measure the visits and clicks on our website in order to constantly improve it.
Marketing
These cookies and similar technologies are used to provide you with personalized and therefore relevant advertising content.